

Species diversity of birds in the pulses cultivated lands of Mayiladuthurai Taluk, Nagappatinam District, Tamil Nadu during 2004 to 2006

Thomas Nithiyanandam¹ and S. Asokan²

Department of Zoology, TBML College, Porayar-609307, Tamilnadu Department of Zoology, AVC College (Autonomous), Mayiladuthurai- 609305, Tamilnadu

Abstract

The species diversity (H') of birds in the study area was related to the insects' abundance by comparing the yielding capacity of crop lands in natural and enclosed plots. Scan sampling (Altmann 1974) method was adopted to record birds and the method of Pradhan (1991) was followed to estimate insects' abundance. The study indicated the occurrence of 64 species of birds comprising omnivores, insectivores, carnivores, granivores, and frugivores. The species diversity (H') of birds ranged from 0.683 to 1.789 and the variations in the abundance of insects indicated no significant difference among seasons (P>0.05). The mean yielding capacity increased from 15.25 to 24.50% in the enclosed plots. A comparison of yield in natural and enclosed plots revealed an increase in yield ranging from 8.33 to 40.00%.

Key words: Agricultural ornithology, insect abundance, species diversity, yielding capacity

INTRODUCTION

Detailed information about population dynamics is not available even on the very common species of Indian birds. Exact knowledge on the population structure, natality, mortality, dispersal, etc, is almost non-existent. However, some studies have been conducted on seasonal changes in population density and other indices of a **few species in agricultural habitats (Toor** *et al.*, 1986). Some estimates of density of breeding Weaver birds *Ploceus* spp. have been made in Andhra Pradesh (Mathew, 1976) and Punjab (Dhindsa, 1986). Asokan *et al.*, (2009) have made a study on some of the common birds occupying the agricultural environments in Nagapattinam District, Tamil Nadu, India.

Available information on food and feeding habits of some common bird species in cultivated and natural habitats is quite good. Although some of this information is purely qualitative and preliminary, the rest is based on detailed analytical and quantitative studies. Mathew *et al.* (1978) analyzed the food and feeding habits of 9 species of birds affecting agriculture in India.

Recently, gut content analyses have been supplemented by field observation on the feeding behaviour and captivity experiments on food preference of the concerned species (Mathew, 1976; Mathew *et al.*, 1978; Dhindsa and Toor, 1990; Saini and Dhindsa, 1993). When feeding ecology is studied to estimate the impact of a species on agriculture, gut content analyses alone do not serve the purpose. Field observations on the feeding behaviour must also be recorded to pinpoint the sources of various foods. For instance, Dhindsa and Toor (1990) found that rice was the principal food type in the guts of three species of Weaver birds *Ploceus* spp. in Punjab. However, field observations show that most of the rice grains taken by these birds are either left in the stored straw or shed during the crop harvest.

Another important aspect of the feeding ecology is food preference of the captive birds. Such studies will be helpful in the management of insect pest species in the crop lands (Cummings et al., 1987; Fairaizl and Pfeifer, 1988). The amount of food consumed by captive or wild birds could be used to assess the damage potential of a avian species (Avery 1979; Toor et al., 1986; Saini and Toor, 1991). Unfortunately, only a little work has been done in this direction. Mathew (1976) and Dhindsa and Toor (1990) studied the preferences of captive Baya Weaver bird *Ploceus philippinus* for different food types in Andhra Pradesh and Punjab, respectively. Both the studies provide conflicting results. The food preferences of the captive Rose-ringed Parakeets Psittacula krameri have also been studied (Simwat and Sidhu, 1974; Saini and Dhindsa, 1993). Thus the present work aims at describing the diversity in the pulses cultivated lands

STUDY AREA

The present investigation was carried out in an area of 150 km² (approximately) encompassing a 5 km (approximately) radius in and around, Mayiladuthurai (11°18' N, latitude 79°5°' E longitude) in the Cauvery Delta of Tamil Nadu.

MATERIALS AND METHODS

A field binocular was used for field observations. Birds were identified following Ali and Ripley (1969). Scan sampling method as described by Altmann (1974) was followed for recording bird abundance

Calculation of Species Diversity

Shannon-Wiener (1949) diversity measure was used to calculate the diversity values.

www.bvgtjournal.com

^{*}Corresponding Author : email: thomas.kevin08@gmail.com.

 $H' = - "Pi \log_2 Pi$

where, H' = Shannon-Wiener Diversity index and

Pi = Proportion of each category

Calculation of Species Richness

It refers to the number of species of birds recorded per unit area.

Insect collection

The insect categories available in the pulses cultivated lands were collected once in fifteen days from October 2005 to September 2006 using a standard sweep net. The method of Pradhan (1991) was followed for collecting the insects. The insects were collected between 15:00 and 18:00 hrs. Collections were avoided on cloudy and rainy days.

In each transect of 2 km length, 50 sweepings were made at random. The collected insects were identified and the frequency of each insect order was used to calculate their abundance (%) in different habitats.

To compare the extent of damage caused by birds to crops field trials were conducted in natural and enclosed plots

RESULTS

Diversity of birds in pulses cultivated lands

A total of 64 species of birds (44% passerine and 56% non-passerine birds) comprising 30 families and 13 orders were recorded in the study area during 2004-2006 (Table 1). Among 64 species of birds , 28 species belonged to the order Passeriformes, six each to Cuculiformes and Coraciiformes, five to Ciconiiformes, three each to Falconiformes, Galliformes and Charadriiformes, two each to Gruiformes, Columbiformes, Apodiformes and Piciformes and one each to Psittaciformes and Strigiformes. Out of these 64 species, 26 (40.6%) were omnivores, 21 (32.9%) insectivores, 13 (20.3%) carnivores and 2 (3.1%) each were granivores and frugivores.

Diversity values of bird species (H') in nursery, flowering, fruting and harvest stages of pulses and post harvest stage of lands during 2004-2006 were given in table 2. During 2004-2005, the diversity (H') value of birds in nursery lands was 0.762; that of flowering 1.695; fruiting 1.442; harvest 1.789 and post harvest 0.956. The Species diversity values were 0.683 in nursery lands; 1.434 in flowering; 1.538 in fruiting; 1.706 in harvest and 0.956 in post harvest stages during 2005-2006. In both years highest diversity values (H') were recorded at harvest stages and lowest in seedling stages. There existed no significant difference in the bird diversity values(H') (P>0.05) in various growing stages of pulses during 2004-2006 (Table 2).

Species diversity of birds in the pulses cultivated lands 137

Prey availability

The availability of various insect orders in the pulses cultivated lands during different seasons was given in table 3. The overall mean percent availability of various insect orders included Orthoptera (27.6%), Coleoptera (15.1%), Hymenoptera (14.6%), Hemiptera (11.1%), Lepidoptera (8.7%), Diptera (6.1%) and Odonata (6.0%).

During monsoon, the availability of Orthopteran insects was higher (26.8%) and that of Diptera was lower (4.9%). The availability of other insect orders viz., Coleoptera, Hymenoptera, Hemiptera, Lepidoptera and Odonata was 18.0%, 10.8%, 9.8%, 8.3% and 8.1% respectively. Percent availability of various insect orders in the pulses cultivated lands during post-monsoon included Orthoptera 33.9 %, Coleoptera 12.3%, Hemiptera 11.6%, Hymenoptera 11.1%, Diptera 7.2%, Lepidoptera 6.1% and Odonata 6.0%. During summer, Orthopteran insects (28.6%) were the most commonly available insects in the study area. The abundance of other insect orders in the study area included Coleoptera (13.7%), Hymenoptera (13.1%), Hemiptera (11.3%), Lepidoptera (10.4%), Diptera (6.7%) and Odonata (5.9%). During premonsoon, the availability of Hymenopteran insects was higher (23.2%) followed by Orthoptera (21.0%), Coleoptera (16.5%), Hemiptera (11.6%), Lepidoptera (10.1%), Diptera (5.7%) and Odonata (4.1%). Seasonal variations in the availability of prey categories were not significant (P>0.05).

The frequency of pulse panicles/bunches in ten different natural and enclosed plots during 2005-2006 was given in table 4. The yielding capacity of pulses was in general higher in enclosed plots than natural plots. The mean availability of panicles/bunches in natural and enclosed plots varied from 12.25 to 18.25 and from 15.25 to 24.50 respectively.

Data with regard to percent increase in the yield of pulses in natural and enclosed plots during the study period were given in table 5. The mean difference of yield between two plots was 29.50. The overall yielding capacity was greater in enclosed plots when compared to natural plots.

DISCUSSION

Totally 64 species of birds belonged to 13 orders were recorded in the pulse cultivated lands. Among the 64 species, 38 belonged to Passeriformes, 6 each to Cuculiformes and Coraciiformes, 5 to Ciconiiformes, 3 each to Falconiformes, Galliformes and Charadriiformes. Balasundaram and Rathi (2004) reported 108 species of birds in agricultural lands of Thiruverumbur taluk in Thiruchirapalli district of Tamil Nadu. Nathan and Rajendiran (1982) reported 30 species of birds in the crop lands of Pondicherry region. Since the present work has been concentrated on pulse cultivated lands, the

P - ISSN 0973 - 9157 E - ISSN 2393 - 9249 January to March 2015

S. No	Order	Family	Common Name	Scientific Name	Feeding Habits
1	Ciconiiformes	Ardeidae	Little Egret	Egretta garzetta	CV
2	Ciconiiformes	Ardeidae	Large Egret	Casmerodius albus	CV
3	Ciconiiformes	Ardeidae	Cattle Egret	Bubulcus ibis	CV
4	Ciconiiformes	Ardeidae	Indian Pond Heron	Ardeola grayii	CV
5	Ciconiiformes	Ciconiidae	Asian Openbill Stork	Anastomus oscitans	CV
6	Falconiformes	Accipitridae	Black-shouldered Kite	Elanus caeruleus	CV
7	Falconiformes	Accipitridae	Black Kite	Milvus migrans	CV
8	Falconiformes	Accipitridae	Brahminy Kite	Haliastur indus	CV
9	Galliformes	Phasianidae	Grey Francolin	Francolinus	OM
				pondicerianus	
10	Galliformes	Phasianidae	Red Jungle Fowl	Gallus gallus	OM
11	Galliformes	Phasianidae	Indian Peafowl	Pavo cristatus	OM
12	Gruiformes	Rallidae	White-breasted Waterhen	Amaurornis	OM
				phoenicurus	
13	Gruiformes	Rallidae	Common Coot	Fulica atra	OM
14	Charadriiformes	Charadriidae	Yellow-wattled Lapwing	Vanellus malabaricus	IN
15	Charadriiformes	Charadriidae	Red-wattled Lapwing	Vanellus indicus	IN
16	Charadriiformes	Charadriidae	Common Sandpiper	Actitis hypoleucos	IN
17	Columbiformes	Columbidae	Blue Rock Pigeon	Columba livia	GR
18	Columbiformes	Columbidae	Spotted Dove	Streptopelia chinensis	GR
19	Psittaciformes	Psittacidae	Rose-ringed Parakeet	Psittacula krameri	FR
20	Cuculiformes	Cuculidae	Pied Crested Cuckoo	Clamator jacobinus	OM
21	Cuculiformes	Cuculidae	Brainfever Bird	Hierococcyx varius	OM
22	Cuculiformes	Cuculidae	Indian Cuckoo	Cuculus micropterus	OM
23	Cuculiformes	Cuculidae	Common Cuckoo	Cuculus canorus	OM
24	Cuculiformes	Cuculidae	Asian Koel	Eudynamys scolopacea	OM
25	Cuculiformes	Cuculidae	Greater Coucal	Centropus sinensis	CV
26	Strigiformes	Strigidae	Spotted Owlet	Athene brama	CV
27	Apodiformes	Apodidae	Asian Palm Swift	Cypsiurus balasiensis	IN
28	Apodiformes	Apodidae	House Swift	Apus affinis	IN
29	Coraciiformes	Alcedinidae	Small Blue Kingfisher	Alcedo atthis	CV
30	Coraciiformes	Alcedinidae	White-breasted Kingfisher	Halcyon smyrnensis	CV
31	Coraciiformes	Alcedinidae	Lesser Pied Kingfisher	Ceryle rudis	CV
32	Coraciiformes	Meropidae	Small Bee-eater	Merops orientalis	IN
33	Coraciiformes	Coraciidae	Indian Roller	Coracias benghalensis	IN
34	Coraciiformes	Upupidae	Common Hoopoe	Upupa epops	IN
35	Piciformes	Capitonidae	Copper-smith Barbet	Megalamia	FR
				haemacephala	
36	Piciformes	Picidae	Lesser Golden-backed	Dinopium benghalense	OM
			Woodpecker		
37	Passeriformes	Hirundinidae	Common Swallow	Hirundo rustica	IN
38	Passeriformes	Motacillidae	Large Pied Wagtail	Motacilla	IN
				maderaspatensis	

Table 1: Systematic list of the birds recorded in the study area during 2004-2006

P - ISSN 0973 - 9157 E - ISSN 2393 - 9249 January to March 2015

www.bvgtjournal.com

39PasseriformesMotacillidaePaddyfield PipitAnthus rufulusIN40PasseriformesCampephagidaeSmall MinivetPericrocotus cinnamomeusIN41PasseriformesPycnonotidaeRed-vented BulbulPycnonotus caferOM42PasseriformesIrenidaeCommon IoraAegithina tiphiaOM43PasseriformesMuscicapidaeOriental Magpie RobinCopsychus saularisIN44PasseriformesMuscicapidaeIndian RobinSaxicoloides fulicataIN45PasseriformesMuscicapidaeCommon BabblerTurdoides caudatusOM46PasseriformesMuscicapidaePaddy field WarblerAcrocephalus agricolaIN48PasseriformesMuscicapidaeBlyth's Reed WarblerAcrocephalus dumetorumIN49PasseriformesMuscicapidaeThick-billed WarblerAcrocephalus aedonIN50PasseriformesMuscicapidaeCommon Tailor BirdOrthotomus sutoriusIN
41PasseriformesPycnonotidaeRed-vented BulbulPycnonotus caferOM42PasseriformesIrenidaeCommon IoraAegithina tiphiaOM43PasseriformesMuscicapidaeOriental Magpie RobinCopsychus saularisIN44PasseriformesMuscicapidaeIndian RobinSaxicoloides fulicataIN45PasseriformesMuscicapidaeCommon BabblerTurdoides caudatusOM46PasseriformesMuscicapidaeAshy PrinaPrinia socialisIN47PasseriformesMuscicapidaePaddy field WarblerAcrocephalus agricolaIN48PasseriformesMuscicapidaeBlyth's Reed WarblerAcrocephalus dumetorumIN49PasseriformesMuscicapidaeThick-billed WarblerAcrocephalus aedonIN
42PasseriformesIrenidaeCommon IoraAegithina tiphiaOM43PasseriformesMuscicapidaeOriental Magpie RobinCopsychus saularisIN44PasseriformesMuscicapidaeIndian RobinSaxicoloides fulicataIN45PasseriformesMuscicapidaeCommon BabblerTurdoides caudatusOM46PasseriformesMuscicapidaeAshy PrinaPrinia socialisIN47PasseriformesMuscicapidaePaddy field WarblerAcrocephalus agricolaIN48PasseriformesMuscicapidaeBlyth's Reed WarblerAcrocephalus dumetorumIN49PasseriformesMuscicapidaeThick-billed WarblerAcrocephalus aedonIN
43PasseriformesMuscicapidaeOriental Magpie RobinCopsychus saularisIN44PasseriformesMuscicapidaeIndian RobinSaxicoloides fulicataIN45PasseriformesMuscicapidaeCommon BabblerTurdoides caudatusOM46PasseriformesMuscicapidaeAshy PrinaPrinia socialisIN47PasseriformesMuscicapidaePaddy field WarblerAcrocephalus agricolaIN48PasseriformesMuscicapidaeBlyth's Reed WarblerAcrocephalus dumetorumIN49PasseriformesMuscicapidaeThick-billed WarblerAcrocephalus aedonIN
44PasseriformesMuscicapidaeIndian RobinSaxicoloides fulicataIN45PasseriformesMuscicapidaeCommon BabblerTurdoides caudatusOM46PasseriformesMuscicapidaeAshy PrinaPrinia socialisIN47PasseriformesMuscicapidaePaddy field WarblerAcrocephalus agricolaIN48PasseriformesMuscicapidaeBlyth's Reed WarblerAcrocephalus dumetorumIN49PasseriformesMuscicapidaeThick-billed WarblerAcrocephalus aedonIN
45PasseriformesMuscicapidaeCommon BabblerTurdoides caudatusOM46PasseriformesMuscicapidaeAshy PrinaPrinia socialisIN47PasseriformesMuscicapidaePaddy field WarblerAcrocephalus agricolaIN48PasseriformesMuscicapidaeBlyth's Reed WarblerAcrocephalus dumetorumIN49PasseriformesMuscicapidaeThick-billed WarblerAcrocephalus aedonIN
46PasseriformesMuscicapidaeAshy PrinaPrinia socialisIN47PasseriformesMuscicapidaePaddy field WarblerAcrocephalus agricolaIN48PasseriformesMuscicapidaeBlyth's Reed WarblerAcrocephalus dumetorumIN49PasseriformesMuscicapidaeThick-billed WarblerAcrocephalus aedonIN
47PasseriformesMuscicapidaePaddy field WarblerAcrocephalus agricolaIN48PasseriformesMuscicapidaeBlyth's Reed WarblerAcrocephalus dumetorumIN49PasseriformesMuscicapidaeThick-billed WarblerAcrocephalus aedonIN
48PasseriformesMuscicapidaeBlyth's Reed WarblerAcrocephalus dumetorumIN49PasseriformesMuscicapidaeThick-billed WarblerAcrocephalus aedonIN
49PasseriformesMuscicapidaeThick-billed WarblerAcrocephalus aedonIN
50 Passeriformes Muscicapidae Common Tailor Bird Orthotomus sutorius IN
51 Passeriformes Muscicapidae Asian Paradise Flycatcher Terpsiphone paradise IN
52 Passeriformes Nectariniidae Purple-rumped Sunbird Nectarinia zeylonica OM
53 Passeriformes Nectariniidae Purple Sunbird Nectarinia asiatica OM
54 Passeriformes Estrilidinae White-throated Munia Lonchura malabarica OM
55PasseriformesEstrilidinaeBlack-headed MuniaLonchura malaccaOM
56PasseriformesPloceidaeHouse SparrowPasser domesticusOM
57PasseriformesBaya WeaverPloceus philippinusOM
58PasseriformesSturnidaeBrahminy StarlingSturnus pagodarumOM
59PasseriformesSturnidaeCommon MynaAcridotheres tristisOM
60PasseriformesOriolidaeEurasian Golden OrioleOriolus oriolusOM
61 Passeriformes Dicruridae Black Drongo Dicrurus macrocercus IN
62 Passeriformes Corvidae Indian Tree pie Dendrocitta vagabunda OM
63 Passeriformes Corvidae House Crow Corvus splendens OM
64 Passeriformes Corvidae Jungle Crow Corvus macrorhynchos OM

Table 2: Species diversity (H') of birds in different stages of pulses cultivated lands

Year		ANOVA					
	Nursery	Flowering	Fruiting	Harvest	Post harvest	F	Р
2004-2005	0.762(13)	1.695(9)	1.442(11)	1.789(8)	0.956(3)	1.889	0.241
2005-2006	0.683(14)	1.434(10)	1.538(10)	1.706(8)	0.956(5)		

Values in parentheses are number of species of birds

avian species richness could be considered high when compared to other regions.

The species diversity of birds (H') in the pulses cultivated lands fluctuated from 0.762 (nursery stage) to 1.789 (harvest stage) during 2004-05. More or less similar trend has been recorded during 2005-06 in the study area. At the same time, the number of bird species recorded in the nursery lands was higher than that of the harvest stage in both the years. Such a trend reveals that the prey availability in nursery lands is higher than in harvest stage of the crop land. Further, such a trend is noticed throughout the study period as evidenced by ANOVA (P>0.05). Altogether, insects belonged to seven orders such as Orthoptera, Hemiptera, Coleoptera, Lepidoptera, Hymenoptera, Odonata, Diptera and 'Others' were sighted in the study area. Further, ANOVA indicates that there is no significant difference (P> 0.05) in the availability of insect prey among the four seasons. Kandoria *et al.* (1989) and Kuo (1999) stated that temperature is an important factor affecting the seasonal fluctuations of insects. During summer, the photoperiod is longer and so insects are active throughout the day. Cultivated crops and weeds in and around fields may affect the species diversity of insects (Rajagopal and Kareem, 1983; Shultz *et al.*, 1985; Singh *et al.*, 1990; Rohilla

Prey items		Season				ANOVA	
	MON2005	POM2006	SUM2006	PRM2006	Overall	F	Р
Orthoptera	26.8 ± 0.7	33.9 ± 2.8	28.6 ± 1.8	21.0 ± 3.1	27.6 ± 5.3	3.00	0.095
Hemiptera	9.8 ± 0.6	11.6 ± 1.0	11.3 ± 1.1	11.6 ± 1.7	11.1 ± 0.9	0.76	0.549
Coleoptera	18.0 ± 0.9	12.3 ± 1.0	13.7 ± 0.9	16.5 ± 0.9	15.1 ± 2.6	0.80	0.526
Lepidoptera	8.3 ± 0.6	6.1 ± 0.5	10.4 ± 1.3	10.1 ± 1.2	8.7 ± 2.0	1.83	0.221
Hymenoptera	10.8 ± 0.9	11.1 ± 0.9	13.1 ± 0.6	23.2 ± 1.0	14.6 ± 5.9	3.03	0.093
Odonata	8.1 ± 0.6	6.0 ± 0.5	5.9 ± 1.9	4.1 ± 1.3	6.0 ± 1.6	1.14	0.390
Diptera	4.9 ± 0.4	7.2 ± 0.6	6.7 ± 1.0	5.7 ± 0.8	6.1 ± 1.0	1.05	0.423
Others	13.2 ± 1.0	11.7 ± 1.0	10.3 ± 1.2	7.7 ± 0.9	10.7 ± 2.3	0.69	0.584

Table 3: Abundance (%) of various insect orders in the pulses cultivated lands during different seasons.

MON - Monsoon; POM - Post-monsoon; SUM - Summer; PRM - Pre-monsoon

PlotNo.	Frequency ofpanicles / bunches in natural plots			Mean ± SD	Frequency ofpanicles / bunches in enclosed plots			Mean ± SD		
1	12	13	8	16	12.25 ± 3.30	16	18	19	18	15.25 ± 4.99
2	21	15	11	16	15.75 ± 4.11	18	23	15	19	18.75 ± 3.30
3	18	19	20	13	17.50 ± 3.11	23	28	30	17	24.50 ± 5.80
4	20	15	19	17	17.75 ± 2.22	20	18	15	14	16.75 ± 2.75
5	22	20	18	13	18.25 ± 3.86	17	23	20	21	20.25 ± 2.50
6	15	16	12	17	15.00 ± 2.16	18	18	19	15	17.50 ± 1.73
7	18	15	19	20	18.00 ± 2.16	21	18	18	21	19.50 ± 1.73
8	15	23	16	11	16.25 ± 4.99	18	26	17	21	20.50 ± 4.04
9	18	16	10	16	15.00 ± 3.46	20	18	20	18	19.00 ± 1.15
10	21	17	12	20	17.50 ± 4.04	25	21	15	22	20.75 ± 4.19

Table 4: A comparison of yielding capacity of pulses in natural and enclosed plots during 2005-2006

Table 5: Mean difference and percentage increase in yield of pulses in natural and enclosed plots during 2005-2006

PlotNo.	Mean yieldin natural plots	Mean yield in enclosed plots	Mean difference	Percent increase in yield
1	12.25	15.25	3.00	24.49
2	15.75	18.75	3.00	19.05
3	17.50	24.50	7.00	40.00
4	17.75	16.75	-1.00	-5.63
5	18.25	20.25	2.00	10.96
6	15.00	17.50	2.50	16.67
7	18.00	19.50	1.50	8.33
8	16.25	20.50	4.25	26.15
9	15.00	19.00	4.00	26.67
10	17.50	20.75	3.25	18.57

www.bvgtjournal.com

J. Sci. Trans. Environ. Technov. 8(3), 2015

et al., 1996). In the study area, paddy and pulses were the major crop associated with more number of insects during summer and post-monsoon. Lattin (1993) and Hutheson and Jones (1999) noted that terrestrial arthropod diversity could be influenced by vegetation types and density.

The mean frequency of panicles/ bunches was high in enclosed plots. The mean yield was also high in enclosed plots and the percentage increase in yield was from - 5.63 to 40.00%. The results reveal that in general, the percentage increase in yield could be from 8.33 to 40.0% except in one plot which showed a negative trend (- 5.63%). Thus, prey abundance and distribution, vegetation structure and plant species composition interact to create unique foraging opportunities which vary among bird species as reported by Holmes and Schultz (1988) among warblers

REFERENCES

- Ali, S. and Ripley, S.D., 1969. *Handbook of the Birds of India and Pakistan*, Vol. 2. Oxford University Press, Bombay.
- Altmann, J. 1974. Observational study of behaviour: Sampling methods. *Behaviour*, 49: 227-267.
- Asokan, S., Ali, A.M.S, and Manikannan, R., 2009. Diet of three insectivorous birds in Nagapattinam District, Tamil Nadu, India - a preliminary study. *Journal of Threatened Taxa*, 1(6): 327-330.
- Avery, M.L. 1979. Food preferences and damage levels of some avian rice field pests in Malaysia. *Proceedings* of Bird Control Seminar 8: 161-166.
- Balasundaram, C and Rathi S., 2004. Avifaunal diversity of Thiruverumbur taluk , Tamil Nadu, *Zoos' Print* Journal, 19 (3): 1417-1421
- Cummings, J.L., Guarino, C.E. Kuittle WC and Royall Jr, 1987. Decoy planting for reducing black bird damage to nearby commercial sunflower fields. *Crop Protection*, 6: 56-60.
- Dhindsa, M.S. 1986. Ecology of Indian weaverbirds. *Indian Review of Life Science*, 6: 101-140.
- Dhindsa, M.S. and Toor,H.S., 1990. Feeding ecology of three sympatric species of Indian Weaver birds in an intensively cultivated area. In: *Granivorous birds in agricultural landscape.* J. Pinawski and J.D. Summers (Eds.). Polish Scientific Publishers, Warsaw. 217-236.
- Fairaizl, S.D. and Pfeifer,W.K., 1988. *The lure crop alternative*. U.S. Forest Service General Technical Report, R.M. 163-168.
- Holmes , R.T., and Schultz J.C., 1988. Food availability for forest birds : effects of prey distribution and abundance on bird foraging . *Canadian J. of Zoology*, 66: 720-728
- Hutheson, J. and Jones, D.,1999. Spatial variability of insect communities in a homogenous system: Measuring biodiversity using Malaise trapped beetles in a Pinus radiata plantation in New Zealand. *Ecological Management*, 118: 93-105.

Species diversity of birds in the pulses cultivated lands 141

- Kandoria, J.L., Jamwal R and Gurdip,S., 1989. Seasonal activity and host range of Aphis gossypii Glover in the Punjab. *Journal of Insect Science*, 2(1):68-70.
- Kuo, M.H. 1999. Effects of temperature, photoperiod and crowding treatment of alate formation in the turnip aphid, Lipaphis erysimi (Kalt.). *Plant Protection Bulletin Tapei*. 41: 255-264.
- Lattin, K.J. 1993. Arthropods species diversity. *Coleopterists Bulletin*, 51: 13-24.
- Mathew, D.N.1976. Ecology of the Weaver birds. J. Bombay Nat. Hist. Soc, 73: 249-260.
- Mathew, D.N., Narendran T.C and Zacharia, V.J., 1978. A comparative study of the feeding habits of certain species of Indian birds affecting agriculture. *J. Bombay Nat. Hist. Soc*, 75(3): 1178-1197.
- Nathan, S.P.C and Rajendiran, B., 1982. Bird fauna of the rice crop ecosystem in Pondicherry region J. Bombay Nat. Hist. Soc, 79: 204-205
- Pradhan, S. 1991. Agricultural entomology and pest control. Indian Council of Agricultural Research, New Delhi. 267pp.
- Rajagopal, S. and Kareem., A.A., 1983. Studies on certain factors affecting alatae production in green peach aphis, Aphis persicae Sulzer. *Pranikee*, 4: 17-22.
- Rohilla, H.R., Singh, H Yadava T.P and Singh, H., 1996. Seasonal abundance of aphid pests on rapeseedmustard crops in Haryana. *Annals of Agricultural Biological Research*, 1: 75-78.
- Saini. H.K. and Dhindsa ,M.S., 1993. Food preferences of captive rose-ringed parakeets: a comparison of two methods. *J.Ornithol.*, 39: 93-100.
- Saini, H.K. and Toor, H.S., 1991. Feeding ecology and damage potential of feral pigeons Columba livia in agricultural habitat. *Gerfaut*, 81: 195-206.
- Shannon, C.E. and Weaver, W., 1949. *The mathematical theory* of communications. University of Illinois Press, Urbana. 125pp.
- Shultz, G.A., Irwin, ME and Goodman ,R.M., 1985. Relationship of aphid (Homoptera: Aphididae) landing rates to the field spread of soyabean mosaic virus. J. Econ. Entomol. ,78: 143-147.
- Simwat, G.S. and Sidhu., A.S., 1974. Food preference of the Rose-ringed Parakeet. *Indian J. Agric. Sci.*, 44: 304-305.
- Singh, J., Sidhu, AS Dhindsa M.S and Saini ,H.K., 1990. The effect of fodder cuttings on larval population, disease incidence and bird predation of Helicoverpa armigera. *Annals of Biology*, 61: 153-159.
- Toor, H.S., Karu, H and Dhindsa, M.S., (1986). Community structure and feeding ecology of birds at grain store in Punjab (India). *Tropical Science*, 26: 233-247.

www.bvgtjournal.com

P - ISSN 0973 - 9157 E - ISSN 2393 - 9249 January to March 2015

Scientific Transactions in Environment and Technovation